Reductive and Catalytic Monoalkylation of Primary Amines Using Nitriles as an Alkylating Reagent

Hironao Sajiki,* Takashi Ikawa, Kosaku Hirota*

Laboratory of Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 502-8585, Japan

Supporting Information

Table of Contents:

Title and table of contents	S1
Experimental procedure	S2-S3
Compound data	S4-S9
References	S10
Copies of NMR spectra	S11-S44

Purification method of nitriles.¹ Each nitrile purchased from Aldrich, Nacalai, TCI and Wako (98-99.8% purity) was washed with conc HCl and brine, then dried over K_2CO_3 . The organic layer was fractionally distilled from P_2O_5 .

General procedure for reductive alkylation of aromatic amines. After two vacuume/H₂ cycles to remove air from the reaction tube, the stirred mixture of the aromatic amine (1.0 or 0.5 mmol), 10% Pd/C (10 wt% of the amine) and the nitrile (5 equiv) in MeOH (1 mL) was hydrogenated at ordinary pressure (balloon) and temperature (ca. 20°C) for appropriate time (see Table 1, 2 and 3). The reaction mixture was filtrated using a membrane filter (Millipore, Millex[®]-LH, 0.45 µm) and the filtrate was concentrated under reduced pressure. The ratio of the primary (1), secondary (2) and tertiary amines (3) was confirmed by ¹H NMR of the crude mixture in CDCl₃. The crude mixture was purified by flash silica gel column chromatography, if necessary. When NH₄OAc was used as an additive, the residue was partitioned between ether (10

mL) and water (10 mL). The aqueous layer was extracted with ether (10 mL×3), then combined organic layers were washed with brine (10 mL), dried with anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure.

Procedure for reductive cyclization of 2-aminobenzylnitrile (7) (equation 1) After two vacume/H₂ cycles to remove air from the reaction tube, the stirred mixture of the 2-aminobenzylcyanide (7) (81.1 mg, 0.5 mmol), 10% Pd/C (8.1 mg, 10 wt% of the substrate) in MeOH (1 mL) was hydrogenated at ordinary pressure (balloon) and temperature (ca. 20°C) for 22 h. The reaction mixture was filtrated using a membrane filter (Millipore, Millex[®]-LH, 0.45 µm) and filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ether 20:1) to afford indole (8) (62.4 mg, 98% yield) as a white solid.

General procedure for preparation of *mono*-alkylaniline derivatives from nitrobenzene (9). After two vacuume/H₂ cycles to remove air from the reaction tube, the stirred mixture of the nitrobenzene (9) (61.6 mg, 0.5 mmol), 10% Pd/C (6.2 mg, 10 wt% of the amine) and nitrile (5 equiv) in MeOH (1 mL) was hydrogenated at ordinary pressure (balloon) and at temperature (ca. 20°C) for the appropriate time (see Table 4). The reaction mixture was filtrated using a membrane filter (Millipore, Millex[®]-LH, 0.45 µm) and filtrate was concentrated under reduced pressure. The ratio of the primary (1), secondary (2) and tertiary amines (3) was confirmed by ¹H NMR of the crude mixture in CDCl₃. The crude mixture was purified by flash silica gel column chromatography, if

necessary.

When NH₄OAc was used as an additive, the residue was partitioned between ether (10 mL) and water (10 mL). The aqueous layer was extracted with ether (10 mL×3), then combined organic layers were washed with brine (10 mL), dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure.

General procedure for reductive alkylation of aliphatic amines. After two vacuume/H₂ cycles to remove air from the reaction tube, the stirred mixture of the aliphatic amine (1.0 mmol), 10% Pd/C or 5% Rh/C (10 wt% of the amine) and a nitrile (5 equiv or 2 equiv) in MeOH (1 mL) was hydrogenated at ordinary pressure (balloon) and temperature (ca. 20°C) for the appropriate time (see Table 5). The reaction mixture was filtrated using a membrane filter (Millipore, Millex[®]-LH, 0.45 μ m) and filtrate was concentrated under reduced pressure. The ratio of the primary (10), secondary (11) and tertiary amines (12) was confirmed by ¹H NMR of the crude mixture in CDCl₃. The crude mixture was purified by flash silica gel column chromatography, if necessary.

When NH₄OAc was used as an additive, the residue was partitioned between ethylacetate (10 mL) and water (10 mL). The aqueous layer was extracted with ether (10 mL×3), then combined organic layers were washed with brine (10 mL), dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure.

Procedure for synthesis of N-ethyl-N-propyl-2-phenylethylamine (15). After two vacuume/H₂ cycles to remove air from the reaction tube, the stirred mixture of the 2-phenylethylamine (13) (121.2 mg, 1.0 mmol), 5% Rh/C (24.2 mg, 20 wt% of the amine) and acetonitrile (261 µl, 5.0 mmol) in MeOH (1 mL) was hydrogenated under ambient pressure (balloon) and at room temperature (ca. 20°C) for 28 h. The reaction mixture was filtrated using a membrane filter (Millipore, Millex[®]-LH, 0.45 µm) and filtrate was concentrated under reduced pressure. The reaction mixture and distilled propionitrile (357 µl, 5.0 mmol) in MeOH was hydrogenated in the presence of 10% Pd/C (16.3 mg) and ammonium acetate (77.1 mg, 1.0 mmol) under ambient temperature and pressure for 7 h. The reaction mixture was filtrated using a membrane filter (Millipore, Millex[®]-LH, 0.45 µm) and filtrate was concentrated under reduced pressure. The residue was partitioned between ethyl acetate (10 mL) and water (10 mL). The aqueous phase was extracted with ethyl acetate (10 mL \times 3), then combined the organic phases were washed with brine (10 mL), dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford *N*-ethyl-*N*-propyl-2-phenylethylamine² (89.5 mg, 94%).

N-Ethylaniline (Table 1, entry 3 and Table 2, entry 1, commercially available)

N-Propylaniline (Table 2, entry 2, commercially available)

N-Butylaniline (Table 2, entry 4 and Table 4, entry 1, commercially available)

N-iso-Butylaniline³ (Table 2, entry 6 and Table 4, entry 2)

N-Pentylaniline (Table 2, entry 7 and Table 4, entry 3, commercially available)

N-(**3-Methylbutyl**)**aniline** (Table 2, entry 8 and Table 4, entry 4) Colorless oil. ¹H NMR (CDCl₃): δ 7.17 (t, *J*=7.6 Hz, 2H), 6.69 (t, *J*=7.6 Hz, 1H), 6.61 (d, *J*=7.6 Hz, 2H), 3.54 (brs, NH), 3.12 (t, *J*=7.3 Hz, 2H), 1.74-1.69 (m, 1H), 1.52 (q, *J*=7.3 Hz, 2H), 0.95 (d, *J*=6.4 Hz, 6H). ¹³C NMR (CDCl₃): δ 148.5, 129.2, 117.1, 112.7, 42.1, 38.6, 26.0, 22.6. MS (EI) m/z 163 (M⁺, 20%), 106 (100), 77 (14). HRMS (EI) Calcd for C₁₁H₁₇N (M⁺) 163.1354. Found 163.1361.

N-(2,2-Dimethylpropyl)aniline (Table 2, entry 10) Colorless oil. ¹H NMR (CDCl₃): δ 7.16 (t, *J*=7.4 Hz, 2H), 6.67 (t, *J*=7.4 Hz, 1H), 6.62 (d, *J*=7.4 Hz, 2H), 3.62 (brs, NH), 2.89 (s, 2H), 0.99 (s, 9H). ¹³C NMR (CDCl₃): δ 149.1, 129.2, 116.9, 112.6, 55.8, 31.8, 22.7. MS (EI) *m*/*z* 163 (M⁺, 15%), 106 (100), 77 (13). HRMS (EI) Calcd for C₁₁H₁₇N (M⁺) 163.1365. Found 163.1361.

N-Dodecylaniline (Table 2, entry 12 and Table 4, entry 5, commercially available)

N-(Cyclohexylmethyl)aniline⁴ (Table 2, entry 13)

N-(**3-Hydroxypropyl)aniline**⁵ (Table 2, entry 14)

N-(3-Cyanopropyl)aniline (Table 2, entry 15) Colorless oil. ¹H NMR (CDCl₃): δ 7.19 (t, *J*=7.3 Hz, 2H), 6.74 (t, *J*=7.3 Hz, 1H), 6.62 (d, *J*=7.3 Hz, 2H), 3.69 (brs, NH), 3.32 (t, *J*=6.7 Hz, 2H), 2.48 (t, *J*=6.7 Hz, 2H), 2.00-1.94 (m, 2H). ¹³C NMR (CDCl₃): δ 147.5, 129.4, 119.3, 118.0, 112.8, 42.3, 25.3, 14.8. MS (EI) m/z 160 (M⁺, 25%), 106 (100), 77 (15). HRMS (EI) Calcd for C₁₀H₁₂N₂ (M⁺) 160.0992. Found 160.1001.

N-(4,4-Dimethoxybutyl)aniline (Table 2, entry 16) The procedure afforded the mixture (680.0 mg) of the title compound and nitrile. The structure was determined by ¹H NMR and HRMS data of the crude mixture.

N-(2-Phenylethyl)aniline⁶ (Table 2, entry 15)

N-Ethyl-3,4,5-trimethoxyaniline (Table 3, entry 1) Dark blue oil. ¹H NMR (CDCl₃): δ 5.85 (s, 2H), 3.83 (s, 6H), 3.76 (s, 3H), 3.13 (t, *J*=7.1 Hz, 2H), 1.26 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 153.9, 145.2, 130.0, 90.3, 61.1, 55.9, 38.9, 14.8. MS (EI) *m/z* 211 (M⁺, 40%), 196 (100). HRMS (EI) Calcd for C₁₁H₁₇NO₃ (M⁺) 211.1196. Found 211.1209.

4-Ethylaminoacetanilide (Table 3, entry 2) White solid. Mp 123-124°C. ¹H NMR (CDCl₃): δ 7.25 (d, *J*=8.5 Hz, 2H), 6.55 (d, *J*=8.5 Hz, 2H), 3.50 (brs, NH), 3.12 (q, *J*=7.1 Hz, 2H), 2.11 (s, *3*H), 1.25 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 168.3, 145.6, 128.1, 122.4, 112.8, 38.7, 24.1, 14.8. MS (EI) *m*/*z* 167 (M⁺, 100%), 163 (40), 121 (65). Anal. Calcd for C₁₀H₁₄N₂O: C, 67.39; H, 7.92; N, 15.72. Found C, 67.39; H, 8.08; N, 15.67.

2-Ethylaminobiphenyl⁷ (Table 3, entry 3)

N-Ethyl-4-fluoroaniline (Table 3, entry 4) Brown oil. ¹H NMR (CDCl₃): δ 6.93-6.86 (m, 2H), 6.55-6.52 (m, 2H), 3.41 (brs, NH), 3.11 (q *J*=7.1 Hz, 2H), 1.25 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 156.9, 154.6, 144.8, 115.7, 155.5, 113.5, 113.5, 39.1, 14.9. MS (EI) m/z 139 (M⁺, 38%), 124 (100). HRMS (EI) Calcd for C₈H₁₀FN (M⁺) 139.0797. Found 139.0792.

4-Ethylaminobenzoic acid (Table 3, entry 5) White solid. Mp 179-180°C. ¹H NMR (CDCl₃): δ 7.92 (d, *J*=8.8 Hz, 2H), 6.55 (d, *J*=8.8 Hz, 2H), 3.23 (q, *J*=7.1 Hz, 2H), 1.29 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 171.7, 152.6, 132.3, 117.1, 111.3, 37.9, 14.6. MS (EI) *m*/*z* 165 (M⁺, 45%), 150 (100). Anal. Calcd for C₉H₁₁NO₂: C, 65.44; H, 6.71; N, 8.48. Found C, 65.22; H, 6.67; N, 8.32.

N-Ethylanthranilic acid (Table 3, entry 6) Light brown solid. Mp 156-157°C. ¹H NMR (CDCl₃): δ 7.96 (d, *J*=8.0 Hz, 1H), 7.39 (t, *J*=8.0 Hz, 1H), 6.69 (d, *J*=8.0 Hz, 1H), 6.60 (t, *J*=8.0 Hz, 1H), 3.26 (q, *J*=7.1 Hz, 2H), 1.32 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 173.0, 151.8, 135.5, 132.6, 114.5, 111.3, 108.5, 37.4, 14.5. MS (EI) m/z 165 (M⁺, 50%), 132 (100), 150 (25), 77 (19), 57 (15). Anal. Calcd for C₉H₁₁NO₂: C, 65.44; H, 6.71; N, 8.48. Found C, 65.58; H, 6.65; N, 8.26.

N-Ethyl-4-trifluoromethylaniline (Table 3, entry 8) Colorless oil. ¹H NMR (CDCl₃): δ 7.39 (d, *J*=8.5 Hz, 2H), 6.58 (t, *J*=8.5 Hz, 2H), 3.89 (brs, NH), 3.22-3.15 (m, 2H), 1.27 (t, *J*=7.3 Hz, 3H). ¹³C NMR (CDCl₃): δ 150.8, 126.7, 126.6, 126.6, 111.7, 38.1, 14.6. MS (EI) m/z 189 (M⁺, 30%), 174 (100). HRMS (EI) Calcd for C₉H₁₀F₃N (M⁺) 189.0765.

Found 189.0771.

N-Ethyl-β-naphthylamine (Table 3, entry 9) Brown oil. ¹H NMR (CDCl₃): δ 7.65 (d, J=8.0 Hz, 1H), 7.61 (d, J=8.0 Hz, 2H), 7.35 (t, J=8.0 Hz, 1H), 7.18 (t, J=8.0 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 6.80 (s, 1H), 3.71 (brs, NH), 3.26 (q, J=7.2 Hz, 2H), 1.32 (t, J=7.2 Hz, 3H). ¹³C NMR (CDCl₃): δ 146.6, 135.3, 128.9, 127.6, 127.5, 126.3, 125.9, 121.8, 118.0, 104.3, 38.5, 14.8. MS (EI) m/z 171 (M⁺, 75%), 156 (100), 127 (40). HRMS (EI) Calcd for C₁₂H₁₃N (M⁺) 171.1048. Found 171.1038.

N-Ethyl-3-aminopyridine⁸ (Table 3, entry 10)

CH₃(CH₂)₉NEt₂

N,*N*-Diethyldecylamine (Table 5, entry 1) Colorless oil. ¹H NMR (CDCl₃): δ 2.51 (t, *J*=7.2 Hz, 4H), 2.40 (t, *J*=7.8 Hz, 2H), 1.47-1.42 (m, 2H), 1.38-1.20 (m, 14H), 1.02 (t, *J*=7.2 Hz, 6H), 0.88 (t, *J*=6.8 Hz, 3H). ¹³C NMR (CDCl₃): δ 53.1, 46.9, 31.9, 29.6, 29.6, 29.3, 27.8, 27.0, 22.7, 14.1, 11.7. MS (FAB, Gly) *m*/*z* 214 (M⁺+H, 17%). HRMS (FAB, Gly) Calcd for C₁₄H₃₂N (M⁺+H) 214.2535. Found 214.2530.

CH₃(CH₂)₉NBu₂

N,N-Dibutyldecylamine (Table 5, entry 2) Colorless oil. ¹H NMR (CDCl₃): δ 2.40-2.36 (m, 6H), 1.44-1.37 (m, 6H), 1.33-126 (m, 18H), 0.93-0.86 (m, 9H). ¹³C NMR (CDCl₃): δ 54.3, 54.0, 31.9, 29.6, 29.2, 27.7, 27.0, 22.6, 20.8, 14.1. MS (FAB, NBA) *m/z* 270 (M⁺+H, 52%). HRMS (EI) Calcd for C₁₈H₄₀N (M⁺+H) 270.3161. Found 270.3158.

 $CH_{3}(CH_{2})_{9}N \begin{array}{<} (CH_{2})_{4}CH_{3} \\ (CH_{2})_{4}CH_{3} \end{array}$

N,N-Dipentyldecylamine (Table 5, entry 3) Colorless oil. ¹H NMR (CDCl₃): δ 2.37 (t, *J*=7.6 Hz, 6H), 1.46-1.20 (m, 14H), 0.89-0.86 (m, 9H). ¹³C NMR (CDCl₃): δ 54.1, 31.9, 29.8, 29.6, 29.3, 27.6, 26.9, 22.6, 14.1. MS (FAB, Gly) *m*/*z* 298 (M⁺+H, 95%). HRMS (FAB, Gly) Calcd for C₂₀H₄₄N (M⁺+H) 298.3468. Found 298.3474.

CH₃(CH₂)₉NHEt

N-Ethyldecylamine (Table 5, entry 4) Colorless oil. ¹H NMR (CDCl₃): δ 2.64(q, *J*=7.2 Hz, 2H), 2.59 (t, *J*=7.1 Hz, 2H), 1.48-1.46 (m, 2H), 1.28-1.26 (m, 14H), 1.11 (t, *J*=7.2 Hz, 3H), 0.88 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 50.0, 44.2, 31.9, 30.3, 29.6, 29.3, 27.4, 22.6, 15.4, 14.1. MS (FAB, NBA) *m*/*z* 186 (M⁺+H, 20%). HRMS (FAB, NBA) Calcd for C₁₂H₂₇N (M⁺+H) 186.2228. Found 186.2222.

CH₃(CH₂)₉NHBu

N-Butyldecylamine (Table 5, entry 5) Colorless oil. ¹H NMR (CDCl₃): δ 2.62-2.58 (m, 4H), 1.52-1.44 (m, 4H), 1.39-1.26 (m, 16H), 0.92 (t, *J*=7.3 Hz, 3H), 0.88 (t, *J*=7.6 Hz, 3H). ¹³C NMR (CDCl₃): δ 49.9, 49.5, 31.9, 31.8, 29.7, 29.6, 29.3, 27.4, 22.6, 20.5, 14.1, 13.9. MS (FAB, NBA) m/z 214 (M⁺+H, 15%). HRMS (FAB, NBA) Calcd for C₁₄H₃₂N (M⁺+H) 214.2535. Found 214.2543.

CH₃(CH₂)₉NH(CH₂)₄CH₃

N-Pentyldecylamine (Table 5, entry 6) Colorless oil. ¹H NMR (CDCl₃): δ 2.58 (t, *J*=7.1 Hz, 4H), 1.52-1.45 (m, 4H), 1.36-1.26 (m, 18H), 0.90 (t, *J*=7.1 Hz, 3H), 0.88 (t, *J*=7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 50.2, 31.9, 30.2, 29.9, 29.6, 29.3, 27.4, 22.6, 14.0. MS (EI) *m*/*z* 227 (M⁺, 10%), 170 (100), 100 (100). HRMS (EI) Calcd for C₁₅H₃₃N (M⁺) 227.2613. Found 227.2600.

References

- (1) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 5th ed.; Butterworth-Heinemann, Amsterdam, 2003; Although possible contaminants of commercial nitriles are the respective halides, alcohols (from hydrolysis), amines, amides, isonitriles, inorganic cyanides and so on, particular contaminants which influence the reported reaction is not clear yet.
- (2) Holland, H. L.; Johnson, G. B. Tetrahedron Lett. 1979, 36, 3395-3396.
- (3) Alonso, F.; Yus, M. Tetrahedron 1998, 54, 1921.
- (4) Rische, T.; Eilbracht, P. Tetrahedron 1998, 54, 8441.
- (5) Chini, M.; Crotti, P.; Favero, L.; Macchia, F. Tetrahedron Lett. 1994, 35, 761.
- (6) Yang, J.-D.; Kim, M.-S.; Lee, M.; Baik, W.; Koo, S. Synthesis 2000, 789.
- (7) Fadda, A. A.; Afsah, E. M. Indian Journal of Chemistry 1985, 24B, 970.
- (8) Watanabe, Y.; Morisaki, Y.; Kondo, T.; Mitsuso, T. J. Org. Chem. 1996, 61, 4214.